导读:目前智能手机的发展趋势,主要以更大的屏幕尺寸、更高的屏幕分辨率,以及更快的处理器为主,但不断提高的硬件规格,其耗电量也越来越可观,以2K屏幕来说,耗电量为1,080P屏幕的1.5倍以上,势必会增加锂电池的能量密度及提高充电速度,来延长手机电池的续航。
目前智能手机的发展趋势,主要以更大的屏幕尺寸、更高的屏幕分辨率,以及更快的处理器为主,但不断提高的硬件规格,其耗电量也越来越可观,以2K屏幕来说,耗电量为1,080P屏幕的1.5倍以上,势必会增加锂电池的能量密度及提高充电速度,来延长手机电池的续航。
手机厂商为了兼顾手机轻薄外观的市场需求,电池容量设计以3,000 ~4,000mAh为主流,因此,可缩短充电时间的快充技术应运而生。目前市场上主要的快充方案有高通(Qualcomm)的Quick Charge、联发科技(MediaTek)的Pump Express,以及OPPO的VOOC等。
市场主要快充方案
高通以提高充电电压来缩短充电时间,从最早的QC 1.0 5V/2A (最大功率10W)充电规格,到QC 2.0兼容5V/9V/12V/20V四种充电电压及最大3A的充电电流(最大功率18W),再到QC 3.0支持3.6V~20V的工作电压动态调节(最大功率22W),比传统5V/1A充电技术快了4倍。
联发科技与高通Quick Charge相似,以恒定电流及提高充电电压至5~20V来实现更大的充电功率,最新的Pump Express 3.0宣称能在20分钟内将2,500mAh的电池从0%充到70%,比传统5V/1A充电技术快5倍。而OPPO则保持5V充电电压,提高充电电流至最高5A的方式来实现快速充电,宣称只需5分钟就可将容量3,000mAh的电池充入48%的电量。
为了缩短手机或是笔记本电脑等3C产品的充电时间,无论是提高充电电压,还是充电电流,各家快充技术的本质都在于提高充电器的功率,由早期5W提高至22W,甚至未来USB Power Delivery充电协议,功率最高可达100W (20V/5A),大幅缩短充电时间,因此,大功率充电器需求量增加在未来是可预期的。随着电源功率的提高,电池势必变得体积更大、重量更重,因此业界在半导体构造及封装的研究与改良上,持续投入了许多精力。
氮化镓半导体
近年来,金属氧化物半导体场效晶体管(MOSFET)已经成为切换电源的主要功率组件,从场效晶体管(FET)、双极结型晶体管(BJT)、MOSFET、到绝缘栅双极型晶体管(IGBT),现在出现了氮化镓(GaN)晶体管,可让切换电源的体积大幅缩小。
例如,Navitas半导体推出尺寸最小的65W USB-PD (Type-C)电源转换器参考设计NVE028A,正是使用了GaN晶体管,相较于市面上现有基于硅(Si)功率组件的适配器尺寸[约98-115cc (6-7in3),重量约300g],Navitas基于AllGaN功率IC的65W适配器体积仅45cc (2.7 in3),重量约60g,相当轻薄迷你。
就目前硅功率组件的切换电源来看,提高脉冲宽度调制(PWM)切换频率虽可缩小电源体积,但伴随着损耗提高而降低其转换效率,及电磁干扰(EMI)的增加,需投入更多的EMI解决对策,因此业界以65kHz为一折衷的选择。
虽然GaN晶体管具有切换速度快、导通损耗低、功率密度高等特性上的优势,但用户直接将电路中的MOSFET换成GaN FET,其成效往往不符合预期,原因在于须以GaN晶体管为设计中心,选择电路线路架构及控制方法,才能将GaN晶体管的优势充分发挥。Navitas AllGaN功率IC,将GaN FET、IC与驱动电路及逻辑电路做了高密度的整合,简化复杂的线路设计,让设计者可以很容易的应用并发挥其特性。
碳化硅半导体
除了GaN,碳化硅(SiC)是目前发展较成熟的宽能隙(WBG)半导体材料,在新一代电源中扮演了重要的角色,与传统硅半导体相比,可应用在较高频率、电压与温度的严苛环境下,还可达到低耗损高效率的特性。随着全球对环境保护的重视,电子产品效率要求的提高,让GaN与SiC成为世界各国半导体业研究的重点。
硅基IGBT一般工作于20kHz以下的频率,受到材料特性的限制,高压高频的硅功率组件难以被实现,而碳化硅MOSFET不仅适合600V~10kV的工作电压范围,同时具备优异的开关特性,能达到更低的开关损耗及更高的工作频率,如20kHz的SiC MOSFET损耗可以比3kHz的Si IGBT低一半,50A的SiC就可以代替150A的Si IGBT,SiC MOSFET的反向电荷Qrr也只有同规格Si MOSFET的5%,显示SiC有传统硅无可相比的优异特性。
另外,在SiC肖特基二极管(SiC SBD)方面,它具有理想的反向恢复特性,当二极管由正向导通转变为逆向关闭时,SiC肖特基二极管极小的反向恢复电流可工作于更高的频率,在相同频率下也能有更高的效率。且SiC肖特基二极管具有正温度系数的特性,当组件温度上升时,正向压降VF也随之变大,此特性若在并联使用时,可避免组件发生热失控(thermal runaway)的状况,因此拥有更高的工作温度,以及组件高温可靠性,故广泛应用于开关电源中功率因素校正(PFC)电路上,PFC电路工作于300kHz以上,可缩小电感组件尺寸,使用SiC SBD可维持相同的工作效率。
在Si功率组件发展的相对成熟的情况下,GaN与SiC功率组件虽具有特性上的优势,但在工艺上,其开发成本的花费要求仍较高,也因此GaN与SiC功率器件的应用至今仍未真正的普及。
贴片型桥式整流器的优势
为应对未来小尺寸、大功率适配器及快速充电器领域的开发,除了依赖前述氮化镓和碳化硅半导体的持续发展,就目前的硅功率组件来说,在电源输入端的桥式整流器,用于充电器及电源适配器的交流(AC)输入端作全波整流功能,其封装形式也逐渐由体积较大的插件式,发展为轻薄短小的贴片型小尺寸封装。
例如智威科技(Zowie)的4A桥式整流器Z4GP40MH,正是使用了SuperChip片型二极管封装技术,将组件厚度由传统KBP插件式封装的3.5mm降低至1.3mm,组件尺寸也缩小至8.1?10.5mm,体积仅KBP插件式封装的17.5%,不仅可缩小组件尺寸节省空间,也符合高度有限制的特殊应用需求。
从以下安森美半导体(ON Semiconductor)的42W设计、德州仪器(TI)的45W与Navitas 65W设计的范例照片,就可看出电源适配器体积持续缩小的趋势,而且都使用了贴片型桥式整流器(蓝框标示处)。
图1:安森美半导体的42W、TI 45W与Navitas 65W充电器设计(由左而右)
贴片型桥式整流器采用SuperChip片型二极管封装技术,除了将二极管贴片型化,内部结构有别于业界的引线接合法(Wire Bonding)工艺,使用的是焊接(Solder Bonding)工艺,如图2的结构示意图,二极管晶粒焊接于上下两铜布线,铜布线连接到组件正负两端子,二极管晶粒产生的热,可由铜布线导到端子,其散热能力较引线结构更佳,降低应用时的组件温度。
图2:采用焊接工艺的SuperChip结构示意图
贴片型桥式整流器采用的芯片也具备关键性,二极管PN结以玻璃护封来降低反向漏电流,全切面玻璃护封(GPRC)技术将整流二极管PN结完整护封,具有高温漏电流较低的特性。
图3:GPRC与业界GPP晶粒示意图
如图4高温反向漏电流特性曲线所示,GPRC芯片在150℃环温测得高温漏电流约50μA,较GPP于125℃时的高温漏电流约100μA低,产品具有更高的芯片工作温度Tj (Tj=175℃ max.),以及更好的产品可靠性。
上一篇文章:全球平板显示行业整合在即
下一篇文章:全球偏光片产业发展及其市场趋势分析
11月12日,应急管理部党组书记、副部长黄明主持召开党组会议和部长办公会议,传达学习贯彻习近平总书记重要训词,部署深入学习宣传贯彻工作等。强调学习贯彻习总书记重要训词精神,是当前全国应急管理系统的首要政治任务和头等大事,要把对党忠诚、纪律严明、赴汤蹈火、竭诚为民“四句话方针”作为全体应急管理干部的根本遵循,以高度的政治自觉和使命担当,迎难而上,奋发有为,坚决维护好人民群众生命财产安全和社会稳定,在新的历史起点上开创应急管理事业新局面。
为了充分发挥全国建筑幕墙门窗专业领域内企业、科研机构、检测机构、高等院校、政府部门、行业协会、消费者、认证机构等方面专家的作用,更好地开展本领域的标准化工作,经国家标准化管理委员会批准,设立全国建筑幕墙门窗标准化技术委员会(SAC/TC448),工作领域与国际标准化组织门和窗技术委员会(ISO/TC162)相关联。
全世界每年发生工伤死亡人数约为110万人,在110万工伤死亡人数当中,有接近1/4的人是由于在施工过程当中没有实施正确操作而造成伤害死亡的。目前,我国每年因建筑工伤事故死亡人数约为13万人,这意味着平均每天就有356人因工伤事故死亡。
在我们的日常生活中,消防相关设施已经随处可见了,它们的存在就是以备不时之需。虽然平时用不到,但危急关头确实要靠它救命。明明如此重要,却出现了很多问题.....。
杭州市萧山区:消防系统“火眼金睛”
中北国泰建设集团有限公司
地址:北京市丰台区总部基地2区10号楼10层
电话:86-010-63727355
友情提醒:本网站及页面涉及项目仅供参考,建议您在投资前务必多咨询、多考察,以降低投资风险。部分企业可能不开放合作内容、产品合作、承包、检测、流程、详情等信息,详情请咨询该企业,以企业确认为准。您应基于自己的独立判断,自行决定是否投资并承担相应风险。
内容声明:本网站为第三方信息发布平台(互联网信息服务提供者),其真实性、准确性和合法性均由会员、用户或经营者负责,本网站对此不承担任何责任。网站信息如涉嫌违反相关法律规定或侵权,请及时联系本网站或按照本网站“投诉删除”等途径联系删除。
本站信息由会员自主添加,本网站不承担相关法律责任,如发现侵权违规问题请发邮件至2740954302@qq.com或联系QQ2740954302删除。